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Abstract. A new exact real-space renormalization group approach is presented for the local 
phonon properties of any given site in an infinite Fibonacci chain. It is found that the local 
phonon densities of states for different sites are different from each other, although they 
have the same structure. Results also suggest that the local phonon spectrum is a Cantor set. 

1. Introduction 

As aone-dimensional (ID) analogue of the Penrose tiling, the Fibonacci chain has been 
studied in great detail in recent years. For the electronic and phonon properties of this 
quasiperiodic system, it is well known that [la] the global spectrum for each case is a 
Cantor set, i.e. the spectrum has self-similarity and the gaps in the spectrum are dis- 
tributed densely. On the other hand, to our knowledge, most work on the spectrum of 
the Fibonacci chain is mainly devoted to the analysis of the global structure of the 
spectrumandnot much attention has been paid tostudyofthelocalproperties. Naturally, 
because there is no translational symmetry in the Fibonacci chain, each site has a 
different environment, but the case is not the same as that of the random system because 
oftheexistenceofthelong-range OrderoftheFibonaccichain. Soit isessentialtodevelop 
a method to investigate the local properties of this quasiperiodic system. Recently, the 
computation of the local density of states (LDOS) at a particular site of the Fibonacci 
chain was first performed by Ashraff and Stinchcombe [9] and later by Chakrabarti eral 
[lo] based on the decimation scheme first used by Southern er al [ll] and Goncalves da 
Silva and Koiller [12]. However, in our judgment, so far no powerful method has been 
found to obtain the LDOS at any site. For this reason, we develop a new real-space 
renormalization group (RSRG) scheme here to study the local electronic and phonon 
properties of an infinite Fibonacci chain. It will be seen that our scheme is convenient 
and powerful in studying the local Green function (LGF) and the LDOS at any  given site. 
In this paper, we mainly study the phonon problem. We shall discuss the electronic case 
elsewhere [13]. 
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... ... 
Figure 1. A schematic representation €or the basic transformation T, on a Fibonacci chain. 

. .. 

... 
Figure 2. A schematic representation for the basic transformation Tp on a Fibonacci chain. 

2. A renormalization group scheme for the local Green Functions 

Study of the excitation spectrum of electrons and phonons in the Fibonacci chain often 
starts from a ID tight-binding Hamiltonian as follows: 

i q 

where each state is an atomic-like orbital centred at site i, and and V, denote the 
diagonal and off-diagonal matrix elements of the Hamiltonian in this basis, in which V ,  
takes two values V, and V ,  arranged in a Fibonacci sequence which is constructed by 
the inflation rule (A, B)+ ( A B , A )  and E;  takes one of the following three values 
according to the local environment of site i: 

v. . = v. , - I , <  , . t + l  = vA  

& .  , = .- if [ Vi-l , i  = V, and = V, 

Vi- l , i  = V ,  and V,.it, = V,. E r  

Fromequation (1)itfollowsthat thematrixelementsoftheGreenfunctionG, = (ilGlj' 
satisfy the following set of equations: 

(Z - ei)G9 = 6, + VikGu i , j=0 ,21 ,*2  , , . .  (2) 
k 

where Z = E + io+ and 6, is the Kronecker delta. The LDOS at site i is then given by the 
diagonal element of the Green function 

pi(E) = -(l/x) [Im G , ( E  f io')] (3) 

where Im denotes the imaginary part of a complex. 

2.1. Three basic renormalization transformations 

In order to obtain the LGF at any given site, we introduce three basic renormalization 
transformations Te, Tp and Ty according to the self-similar structure of the Fibonacci 
chain. If the nearest-neighbour interactions are considered, all the sites in the Fibonacci 
chain can be divided into three types denoted by type a, type p and type y with site 
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... 

... 
Figure 3. A schematic representation for the basic transformation Ty on a Fibonacci chain. 

energies E,, E@ and .cy, respectively. Transformations T,, Ts and Ty illustrated in figures 
1-3 are the decimations for sites of different types. 

2.1.1. Transformation T,. All sites belonging to type p and type yare decimated, while 
sites of type CY with renormalized parameters form a new Fibonacci chain (figure 1). This 
procedure can be represented by (ABABA,ABA) + (A’ ,  B‘) and the corresponding 
RG equations are 

E &  = E ,  + W + V i / ( E  - X) + [ V i W / Y ( E  - ~ g ) ] [ l  + V i / ( E  - X)’] 

E I I  = E ,  + W + [1/(E - X ) ] [ V i  + V i W / ( E  - E P ) ]  + V i V i W / Y ( E  - X)’(E - € 0 )  

E ;  E ,  + W +  V i / ( E - X )  + V i W / Y ( E -  E # )  (4 )  

VA = V A V ~ W / Y ( E - X ) ( E - E ~ )  

VL = V,W/(E - X )  

where 

W = V i / ( E  - € 0 )  

X =  E,, + VB/(E - E P )  (5 )  

Y = E - E? - ( V i  + V i ) / ( E  - E @ )  - V i  V; / (E  - X ) ( E  - E J ) * .  

2.1.2. Transformation T p  The decimated sites are sites of type CY and type y,  and the 
new Fibonacci chain is composed of sites of type p in the original chain (figure 2 ) .  Ts can 
be represented by (BAA, BA) + (A’,  B’) and its RG equations are 

E ~ = E B  + P + [ V ~ / ( E - Q ) ] [ ~ + P / ( E - E , ) ]  

E ;  = € 0  + P + V i / ( E  - Q )  

E ; = E ~ + P + [ V ~ / ( E - E ~ ) ] [ ~ + P / ( E - Q ) ]  (6)  

VA = V i  VB/(E - Q)(E - E ? )  

Vfr = VAVB/(E - E ~ )  

where 

P = V i / ( E  - E ~ )  

Q = E ,  + V i / ( E  - E , , ) .  
(7) 

2.1.3. Transformation T,. For this transformation represented by ( A A B ,  A B )  + 
( A ’ ,  B ‘ ) ,  the new Fibonacci chain comes from the sites of type y of the original chain, 
while the corresponding RG equations can be obtained immediately by interchanging 
the subscripts B and y in equations (6) and (7). 
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Figure 4. Transformations Te and TI classity the Fibonacci chains of different generations 
intotwoclasseswilh key sitesoldifferent types,yhile thenearesl-neighboursitesofthekey 
site can be transferred io the key sites by suitable combinations ol T,, T, and T,: (a) a 
Fibonacci chain with key site (site 0) of type Sg: (b )  a F’ibonacci chain with key site (site 0) 
of type S,. 

From the above statements for the transformations T,, Tg and T,, we have the 
following conclusions. If we apply Tm, To and T ,  to aFibonacci chain individually, three 
renormalized Fibonacci chains are obtained. The sites of the original chain are all 
converted to these new chains. In the asymptotic limit, the length scale factors of the 
transformations T# and Ty are 6,  while the length scale factor for the transformation T, 
is z3, where r is the golden mean. 

2.2. Local Green function at any site 

We consider Fibonacci chains of different generations. A careful examination of the 
transformations T, and T, shows that every Fibonacci chain has a special site which we 
call the key site. The key site has the properties that, through the transformation Tpor 
T,, it remains undecimated while the local environment of this site in the new Fibonacci 
chain is the same as that in the original one. We illustrate this property in figure 4. There 
is only one key site for a Fibonacci chain. These key sites are divided into two types 
denoted by type Sg and S, according to the corresponding transformations Tg and T,, 
respectively. Therefore Fibonacci chains of different generations can be clas5ified into 
two distinct classes by the different types of key site. No successive generations belong 
to the same class. The LGF at the key site of type Sp or S, in an infinite Fibonacci chain 
can be obtained by successive iterations of the transformation Tp or T,. Since Va and V ,  
approach zero by successively iterating Tg or T,, there is only a ‘pseudoatom’ with 
energy E;  or E ;  after infinite iterations, and the LGF at the key site of type So or S, is 
then given by 

Gw 1/(E - E ; )  (8) 

G m  = 1/(E - E ; )  (9) 

or 

where we assume that the origin of the chain is the position of the key site. 
Now we focus our attention to the calculations of the LGF at other sites. We first 

assume that the key site is type Sg and denote it as site 0. It is found that T,  makes site 1 
become the key site of type Sp in the new Fibonacci chain, while T, makes site -1 
become the key site of type S, (figure 4(a)). If site 0 is the key site of type S,, we find 
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that site -1  is transferred to the key site of type S, by Tp, while site 1 is transferred to 
the key site of type Se by T, (figure 4(b)). So the problem of the calculation of the LGF 
at a site which is the nearest-neighbour site of the key site becomes the problem of the 
key site. We repeat the same procedure for each new chain obtained by performing T,, 
Tpand T,andin thiswaywecanconvertanyothergivensitetoakeysiteinarenormalized 
Fibonaccichainandobtain thecorrespondingLGF. Forexample, the~oossat  site2(-2), 
3(-3), 4(-4) . . . are given by the transformations TpT,TpTpTp. . . (T,T,T,T,T, : . . ), 
T,T,TpTpTp. . . (TpT,TyTyTy. . .), T,T,TpTpTp. . . (T,TpT,T,T,. . .), . . . , respectively, 
for the original chain with key site of type Sp, while the LDOSS at these sites in the original 
chain with key site of type S, are given by the transformations TpT,TpTpTp . . . 

. . . ,respectively. 
( T,TpTyT,T,,. . .), T,T,TpTpTp.. . (TpTpT,T,T,. . .), T,T,TpTpTp . . . (T,T,T,T,T,. . .), 

3. Local phonon density of states 

The phonon problem of the I D  quasiperiodicsystem isusually described by the following 
equation of motion: 

- 0 2 Y J i  = Ki+IVi+l  + KiWi-1 - ( & + I  + &)vi (10) 

where vi denotes the displacement of the ith atom from its equilibrium position and Ki 
takes two values K ,  and K B  which are arranged in the Fibonacci sequence. Equation 
(10) can be rewritten as 

[U' - (K t+ l  + K i ) l ~ i  - K i + l Y i + l  - K i ~ i - 1 ,  (11) 

( E  - Ei )YJ ' i  = Vi+ lVi+I  + vivi-1 (12) 

Comparing (11) with the tight-binding model for the electronic problem 

we obtain a Hamiltonian with the same form as equation (1). The parameters are 

K j & l , i  = Ki , i+ ]  = K A  

E i =  K , + K B  if K i - , , i  = K A  and Ki . i+ ,  = Ks i Ki- l , i  = K B  and K i , i + l  = K A  {:+KA 

V, = - K ,  and V ,  = -KB, while E is replaced by U*. 

Now we can study the local phonon properties using the RSRG scheme described in 
section 2. The LDOSS at several sites are given in figures 5-7, where site 0 is the key site 
of typesp. InfiguresS(a) and5(b) we present the resultsfor siteoandsite 2, respectively. 
Figures 6(a) and 6(b) are devoted to site 1 and site 3, while figures 7(a) and 7(b) 
correspond to site -1 and site 4. When nearest-neighbour interactions are considered, 
site 0 and site 2 are sites of type b, site 1 and site 3 belong to type y, and site -1 and site 
4 are sites of type a. One can see from figures 5-7 that the spectrum for every site is 
composed of three main clusters, and each of these consists of three subclusters. Such a 
trifurcating structure which is more explicit in the high-frequency region indicates that 
the spectrum is self-similar. In addition, the behaviours of K ,  and K B  show that the 
eigenfrequencies are discrete because K ,  and K ,  approach zero under the trans- 
formations for all real or complex E. All this suggests that the local phonon spectrum is 
a Cantor set. Sire and Mosseri [14] have studied the behaviour of the gap widths of a 
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Fgure 5. The moss (arbitrary units) at WO sites 
of type 0, in which K, = 1 and K, = 2: (0) site 0 
(key site of type S#); (6)  site 2. 
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Figure 6. The LDOSS (arbitrary unils) at two sites 
of type y. in which K,, = 1 and RB = 2: (a )  site 1; 
( b )  site 3 

Figure 7. The LDOSs (arbitrary units) at WO sites 
of type e, in which KA = 1 and K ,  = 2: (a) site 
-1; (6)sik4. 
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quasiperiodic Hamiltonian. Their results showed that, at weak frequencies, the local 
integrated density of states (LIDOS) at a sufficiently weak potential is equivalent to the 
IDOS of the periodic strain chain and the LIDOSS at different sites are equal in the limit 
w + 0 for the general case. Careful examination of figures 5-7 shows that our results are 
not in conflict with the above conclusions. Another feature concerning the local phonon 
properties is that, on the one hand, the LDOSS for different sites are different from each 
other even though there may be the same nearest-neighbour interactions but, on the 
other hand. the LDOSS have the same structure. 

4. Summary 

We have given a new RSRG scheme to study the local phonon properties of an infinite 
Fibonacci chain. In our RSRG scheme, three basic renormalization transformations T,, 
Ta and T, are introduced. Transformations To and T, classify the Fibonacci chains of 
different generations into two classes with key sites of type So and type S,, respectively. 
No successive generations belong to the same class. Any other site can be transferred to 
the key site of a renormalized Fibonacci chain by suitable combinations of T,, Ta and 
T,. The LDOS at the key site of type So or S, is obtained by successive iterations of the 
transformation Ts or Ty. Numerical results show that the LDOSS for different sites are 
different from each other, although they have the same structure. In addition, we find 
that the local phonon spectrum is a Cantor set. All these observations indicate that the 
local phonon properties of the Fibonacci chain are between the periodic system and the 
random system, just as the characteristic of the structure of the Fibonacci chain is. 
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